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Global Warming
Projected Temperature from the Fifth Assessment Report of the United
Nations Intergovernmental Panel on Climate Change (IPCC 2014):

I Current damage: about 1.6% loss of global GDP annually
I In 2030: 3.2% loss of global GDP

I the world’s least developed countries will suffer losses of up to 11%
of their GDP

I 2% of the GDP of the US
I $1.2 trillion for China



Abrupt, Stochastic, and Irreversible Climate Change

Tipping element: a significant event with permanent damages
I Antarctic and Greenland ice sheet melting (sea level rise, IPCC 2014)

I 0.2% ~ 4.6% of the world’s population is flooded annually in 2100
I 0.3% ~ 9.3% loss of the global GDP annually in 2100



Abrupt, Stochastic, and Irreversible Climate Change

I Thermohaline circulation collapse (THC)
I Experts’ subjective probability of AMOC (Atlantic Meridional

Overturning Circulation) collapse in 2100 (Zickfel et al. 2007)



Risk Uncertainty

I taste shocks, uncertain technological advances (e.g., quantum
computers), financial crisis, weather shocks (IPCC 2014)



Parameter Uncertainty
I policymakers do not know parameters that characterize the

economic and/or climate systems
I Climate sensitivity: the increase of surface temperature from a

doubling of carbon concentration in the atmosphere
I Distribution of climate sensitivity (United States International

Working Group on Social Cost of Carbon, 2010)



Model Uncertainty

I Model uncertainty: policymakers do not know the proper model or
the stochastic processes

I EMF-16 model predictions of marginal abatement costs (Fischer and
Morgenstern, 2005)



Climate Change Policy Analysis

Question: What can and should be the policy response to rising CO2
concentrations in the face of uncertainty?

I Economists analyze simple stylized models of pieces of the system
I Pencil and paper preferred to computers and code
I Deterministic model: economic actors know perfectly future

economic and climate events
I Myopic: ignore trend and dynamics of systems

I We are trying to change that
I Create dynamic and stochastic integrated models of climate and

economy (DSICE)
I uncertain economic growth with long-run risk
I climate tipping risk
I parameter uncertainty and learning
I flexible preferences regarding uncertainty

I Create robust and general tools that can use state-of-the art
numerical methods on modern computer architectures: Climate
change policy is the application



DSICE Framework



DSICE with Epstein-Zin Preferences
I Epstein-Zin Preferences: recursive utility function (distinguish

between risk aversion and the desire for consumption smoothing)
I ψ: intertemporal elasticity of substitution – “consumption flexibility”
I γ: risk aversion parameter

I Nine-dimensional state vector: s = (K ,M,T, ζ, χ, J)
I K : capital; M = (MAT,MUO,MLO); T = (TAT,TOC); ζ: uncertain

technology growth; χ: long-run risk in economic growth; J: climate
tipping state

I Bellman equation (a.k.a. Hamilton-Jacobi-Bellman PDE equation
for the continuous time) for the dynamic stochastic problem:
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Numerical Dynamic Programming

I Numerical Dynamic Programming Algorithm:
I Initialization. Choose the approximation grid, S = {si : 1 ≤ i ≤ m},

and choose functional form for V̂ (s; b). Let V̂ (s; bT ) = VT (s).
Iterate through steps 1 and 2 over t = T − 1, ..., 1, 0.

I Step 1. Maximization step (in parallel): Compute

vi = max
ai∈D(xi ,t)

ut(si , ai ) + βE{V̂ (s+i ; bt+1)},

for each xi ∈ X , 1 ≤ i ≤ m.
I Step 2. Fitting step: Using the appropriate approximation method,

compute the bt such that V̂ (s; bt) approximates (si , vi ) data.

I Three main computational parts: optimization, integration, and
approximation



Parallelization of DSICE

I Discretized dimensions (ζ, χ, J): 91× 19× 16 = 27, 664 points
I Six-dimensional continuous states (k,M,T): 56K approximation

nodes per discrete point
I Master-Submaster-Worker system

I use the Cartesian virtual topology for communicator
I dynamic load balancing

I Total number of optimization problems: 372 billion
Num of Cores Wall Clock Time Total CPU Time

69,184 11.2 hours 88 years



Parallelization of Uncertainty Quantification in DSICE

I Six uncertain parameter values
I intertemporal elasticity of substitution
I risk aversion
I hazard rate of tipping
I expected damages
I variance of damages
I expected duration of the tipping process

I Master-Submaster-Worker system
I Solve on grids in parameter space (2,430 cases)

Num of Cores Wall Clock Time Total CPU Time
8,160 1.04 hour 0.97 year



Social Cost of Carbon for DSICE with Tipping

Hazard Mean Expected Relative SCC
Rate Damage Duration Variance ψ = 0.5 ψ = 1.5

Parameter Level γ = 2 γ = 10 γ = 2 γ = 10
0.0045 10% 5 0% 88 109 386 480

40% 91 140 400 586
200 0% 54.4 57.8 227 259

40% 54.9 61.5 232 306
0.0025 10% 5 0% 67 83 274 364

40% 69 103 285 467
200 0% 47.2 49.6 174 195

40% 47.5 51.9 176 224



Dynamics of Solutions for DSICE

Year
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Solution of Deterministic Model

I Optimal Initial Carbon Tax: 125 US$/tC (deterministic model: 37
US$/tC)



Scalability in Parallel Dynamic Programming
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wall  clock  time  (hours)

linear  scaling  time

teraFLOPS  /  second

linear  scaling  teraflops

#core Wall Clock Time (hour) teraFLOPS / sec
928 15.6 0.53

69,184 0.28 29.79



Parallelization in Dynamic Games

I Social decisions are dynamic games
I Economic policy analysis focuses mainly on what is “optimal”.
I Real decisions are made by people acting within a social system with

procedures and rules: a game

I Total number of optimization problems: 1.4 trillion

Num of Cores Wall Clock Time Total CPU Time
100,000 1.8 hours 21 years



Scalability in Parallel Dynamic Games
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Performance of Supercomputing for Supergame

 

 

wall  clock  time  (hours)

linear  scaling  time

teraFLOPS  /  second

linear  scaling  teraflops

#core Wall Clock Time (hours) teraFLOPS / sec
416 16.36 0.052

159,744 0.0561 17.07



Summary

I We construct a DSICE model that incorporates a level of uncertainty
for the economy and the climate supported by data

I We find a far broader range of possible carbon taxes, and show that
there is a good chance that the social cost of carbon could be far
larger than currently thought

I We use the most advanced mathematical methods and computer
hardware to solve the problems

I Our software has good scalability for supercomputing
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